Molecular Structure of 2,2,5,5-Tetramethyl-1,3-diselena-2-germacyclohexane. Evidence for Symmetrical Twist-boat Conformation

Shuji Tomoda,*a Masakatsu Shimoda, a Mitsuru Sanami,a Yoshito Takeuchi,*a and Yoichi litakab
a Department of Chemistry, College of Arts \& Sciences, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153, Japan
b Faculty of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunyo-ku, Tokyo 112, Japan

An X-ray crystallographic analysis and dynamic ${ }^{1} \mathrm{H}$ n.m.r. study have shown that the title compound exists in a symmetrical 2,5 -twist-boat conformation both in the solid state and in solution; an unusually high barrier for interconversion between the two enantiotopic conformational isomers ($32.4 \mathrm{~kJ} / \mathrm{mol}$) has been measured.

Conformational effects in heteroatom-substituted systems have been the subject of intense investigation by both experimental ${ }^{1}$ and theoretical ${ }^{2}$ chemists. In particular, systems having the $\mathrm{X}-\mathrm{C}-\mathrm{Y}$ moiety (X and Y heteroatoms) in a six-membered ring have been thoroughly studied in view of the anomeric effect. ${ }^{1 a}$ Most systems exist exclusively or predominantly in the chair conformation ${ }^{3}$ and are limited to those containing second- and/or third-row heteroatoms as X and Y, with a few exceptions. ${ }^{4}$ We present herein an unprecedented example of a six-membered ring having an $\mathrm{Se}-\mathrm{Ge}-\mathrm{Se}$ segment which adopts an exclusive twist-boat conformation both in the solid state and in solution.

During our investigation of the direct spectral observation of dimethylgermylene (dimethylgermanediyl) ${ }^{5}$ we required the title compound (1), which contains three consecutive fourth-row heteroatoms ($\mathrm{Se}-\mathrm{Ge}-\mathrm{Se}$), as a precursor. X-Ray crystallographic analysis of (1) reveals that the six-membered ring has an unusual symmetrical geometry as shown in Figure
$1 . \dagger$ While the bond angles and distances of (1) are not significantly different from those observed for ordinary organoselenogermanes, ${ }^{6}$ the torsion angle between the two planes which make up the six-membered ring [$\mathrm{Se}(1)-\mathrm{Ge}(2)-$ $\mathrm{Se}(3)$ and $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)]$ is approximately 45°, indicating that (1) possesses a C_{2} symmetry axis along the line connecting the two atoms $\mathrm{Ge}(2)$ and $\mathrm{C}(5)$. The highly symmetrical 2,5-twist-boat conformation of (1) in the solid state is surprising because the intramolecular non-bonded distances between selenium and methylene carbon (ca. $3.21 \AA$) are

[^0]

Figure 1. ORTEP plot of the molecular structure of 2,2,5,5-tetramethyl-1,3-diselena-2-germacyclohexane (1) (hydrogens are omitted). Atoms are shown by 30% probability ellipsoids. Bond distances (\AA) : $\mathrm{Ge}(2)-\mathrm{Se}(1) 2.349 ; \mathrm{Ge}(2)-\mathrm{Se}(3) 2.352 ; \mathrm{Ge}(2)-\mathrm{C}(7) 1.953 ; \mathrm{Ge}(2)-\mathrm{C}(8) 1.967$; $\mathrm{Se}(1)-\mathrm{C}(6) 1.941 ; \mathrm{Se}(3)-\mathrm{C}(4) 2.003$; bond angles $\left(^{\circ}\right): \mathrm{Se}(1)-\mathrm{Ge}(2)-\mathrm{Se}(3) 103.2 ; \mathrm{C}(7)-\mathrm{Ge}(2)-\mathrm{C}(8) 111.5 ; \mathrm{Se}(1)-\mathrm{Ge}(2)-\mathrm{C}(7) 108.6 ; \mathrm{Se}(1)-\mathrm{Ge}(2)-$ $\mathrm{C}(8) 112.1 ; \mathrm{Ge}(2)-\mathrm{Se}(1)-\mathrm{C}(6) 92.4 ; \mathrm{Se}(1)-\mathrm{C}(6)-\mathrm{C}(5) 116.2 ; \mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6) 109.9$.

Figure 2. Variable temperature ${ }^{1} \mathrm{H}$ n.m.r. spectra of (1) in $\mathrm{CFCl}_{3} /$ $\mathrm{CDCl}_{3}(1: 1)$ at 500 MHz .
much less than the sum of the usual van der Waals radii of carbon ($1.7 \AA$) and selenium ($1.9 \AA$). These non-bonded atoms are clearly in contact with each other, which may suggest attractive interactions due to the hypervalent nature of selenium. ${ }^{7,8}$ 1,3-Diaxial interactions, which would cause major destabilization of the hypothetical chair conformation, \ddagger between the axial methyl at $\mathrm{Ge}(2)$ and the axial methylene protons ($3.53 \AA$ for chair and $3.86 \AA$ for twist-boat) may be somewhat relieved on going from the chair to the twist-boat (1), but may not be significant even in the chair because of appreciably elongated bond distances $(2.35 \AA$ for $\mathrm{Ge}-\mathrm{Se}$, $1.95-1.97 \AA$ for $\mathrm{Ge}-\mathrm{C}$, and $1.94-2.00 \AA$ for $\mathrm{Se}-\mathrm{C}$). The marginally distorted bond angles around the sp ${ }^{3}$-hybridized germanium atom may be indicative of the absence of gem-dialkyl effects, ${ }^{3}$ which would contribute to destabilization of the chair form of (1).
It has been reported that six-membered cyclic compounds having a twist-boat structure in the solid state exist as a mixture of chair and twist-boat conformational isomers in solution ${ }^{3}$ owing to significant intermolecular interactions in the solid state. In order to confirm that an intramolecular interaction is responsible for the twist-boat structure of (1), the conformational behaviour of (1) was studied in solution.
\ddagger The Cartesian co-ordinates of a hypothetical chair conformation of compound (1) were generated by a computer-assisted molecular modelling system using the X-ray data of (1).

The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of (1) in $\mathrm{CFCl}_{3} / \mathrm{CD}_{2} \mathrm{Cl}_{2}(1: 1)$ at 500 MHz shows temperature dependent behaviour for only the methylene resonance (Figure 2). This signal ($\delta 2.55$) broadens at about 200 K and reaches the coalescence point at 170 K . Further cooling causes collapse of the broad singlet into two broad singlet absorptions ($160 \mathrm{~K} ; \Delta v 175.7 \mathrm{~Hz}$), which upon further cooling (150 K) collapse into a set of doublets with a splitting of 11.6 Hz , a typical geminal methylene coupling constant. During this process the methyl resonances ($\delta 1.03$ and 1.11) remain unaffected and no extra resonances are observed. In addition, the ${ }^{77} \mathrm{Se}(\delta-153.3$ relative to external $\mathrm{Me}_{2} \mathrm{Se}$) and ${ }^{13} \mathrm{C}$ n.m.r. spectra ($\delta 6.8,25.6,30.9,34.5$) do not show any changes with temperature (down to 173 K) owing to chemical exchange. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum at 150 K is consistent only with a single preferred conformation of (1) which is a symmetrical twist-boat form possessing a C_{2} symmetry axis (2,5 -twisted form), exactly as observed in the X-ray diffraction analysis. The barrier for interconversion between the two enantiotopic twist-boat conformational isomers (ΔG^{\ddagger}) is $32.4 \mathrm{~kJ} / \mathrm{mol}(7.74 \mathrm{kcal} / \mathrm{mol})$ at $T_{\mathrm{c}} 170 \mathrm{~K}$. § The conformational barrier for (1) in solution is much greater than calculated for the interconversion between the two twist-boat conformations of cyclohexane $(0 \sim 7.5 \mathrm{~kJ} / \mathrm{mol}),{ }^{9}$ but is of similar magnitude to the experimental values for macrocyclic hydrocarbons ($c a .30 \mathrm{~kJ} / \mathrm{mol}$). ${ }^{10}$

The anomalously high barrier between the two enantiotopic twist-boat conformers for (1) is remarkable since considerable reduction of syn-eclipsing repulsive interactions in the transition state for pseudo-rotation in (1) due to longer Ge-Se, $\mathrm{C}-\mathrm{Ge}$, and $\mathrm{C}-\mathrm{Se}$ bonds would, a priori, be expected. The 'rabbit-ear' effect ${ }^{1 a}$ of the selenium lone pairs may be substantially attenuated in the hypothetical chair conformation. The results for (1) are in sharp contrast to the non-germanium containing analogue, 1,3-diselenacyclohexane, which adopts a pure chair conformation in solution as revealed by a variable temperature ${ }^{1} \mathrm{H}$ n.m.r. study $\left[\Delta G^{\ddagger}\right.$ (178 K) $34.3 \mathrm{~kJ} / \mathrm{mol}] .{ }^{4}$

Whether or not such anomalous behaviour of fourth-row heteroatoms is due to so-called 'heavy heteroatom effects,' such as hypervalency, ${ }^{8}$ needs further investigation. This is now being studied.
§ The rate constant ($k_{\mathrm{r}} 390.36 \mathrm{~s}^{-1}$ at 170 K) was calculated by the equation $k_{\mathrm{r}}=\pi(\Delta v) / \sqrt{2}(\Delta v 175.72 \mathrm{~Hz}) ; \Delta G^{\ddagger}$ was calculated using the Eyring equation; $k_{\mathrm{r}}=k T / h \cdot \exp \left(-\Delta G^{\ddagger} / R T\right)$.

We thank the Ministry of Education, Science, Culture for financial support through Grants-in-Aid for Scientific Research (Nos. 62604522 and 63604520).

Received, 29th March 1989; Com. 9/01316D

References

1 (a) P. Deslongchamps, 'Stereoelectronic Effects in Organic Chemistry,' Pergamon Press, New York, 1983; (b) F. A. L. Anet and M. J. Kopelevich, J. Chem. Soc., Chem. Commun., 1987, 565; (c) B. M. Pinto, R. J. Batchelor, B. D. Johnston, F. W. B. Einstein, and I. D. Gay, J. Am. Chem. Soc., 1988, 110, 2990; (d) B. M. Pinto, B. D. Johnston, R. J. Batchelor, and J.-H. Gu, J. Chem. Soc., Chem. Commun., 1988, 1087.

2 U. Burkert and N. L. Allinger, 'Molecular Mechanics,' American Chemical Society, 1982, and references cited therein; P. v. R. Schleyer, E. D. Jemmis, and G. W. Spitznagel, J. Am. Chem. Soc., 1985, 107, 6393.
3 A few exceptional cases of six-membered ring containing S-C-S, which possess a twist-boat conformation partially (solution) or exclusively (solid state) have been reported: C. H. Bushweller, G.

Bhat, L. J. Letendre, J. A. Brunelle, H. S. Bilofsky, H. Ruben, D. H. Templeton, and A. Zalkin, J. Am. Chem. Soc., 1975, 97, 65; J. D. Korp, I. Bernal, S. F. Watkins, and F. R. Fronczek, Tetrahedron Lett., 1981, 22, 4767.
4 Six-membered systems containing the $\mathrm{Se}-\mathrm{C}-\mathrm{X}(\mathrm{X}=\mathrm{Se}$ or O$)$ moiety have been reported: A. Geens, G. Swaelens, and M. Anteunis, Chem. Commun., 1969, 439; A. Geens, M. Anteunis, F. De Pessemier, J. Fransen, and G. Verhegghe, Tetrahedron, 1972, 28, 1097.
5 S. Tomoda, M. Shimoda, Y. Takeuchi, Y. Kajii, K. Obi, I. Tanaka, and K. Honda, J. Chem. Soc., ,Chem. Commun., 1988, 910.

6 S. Tomoda, M. Shimoda, and Y. Takeuchi, Chem. Lett., 1988, 535; H. J. Gysling and H. R. Luss, Organometallics, 1989, 8, 363.
7 S. Tomoda, M. Iwaoka, K. Yakushi, A. Kawamoto, and I. Tanaka, J. Phys. Org. Chem., 1988, 1, 179.
8 S. Patai and Z. Rappoport, eds., 'The Chemistry of Organic Selenium and Tellurium Compounds,' vol. 1 in the series 'The Chemistry of Functional Groups,' Wiley, New York, 1986.
9 F. A. L. Anet, A. K. Cheng, and J. J. Wagner, J. Am. Chem. Soc., 1972, 94, 9250; F. A. L. Anet, A. K. Cheng, and J. Krane, ibid., 1973, 95, 7877.
10 J. B. Hendrickson, J. Am. Chem. Soc., 1961, 83, 5537; R. Bucourt, Top. Stereochem., 1974, 8, 159.

[^0]: \dagger Crystal data: $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{Se}_{2} \mathrm{Ge}$: triclinic, space group $P \overline{1} ; T=298 \mathrm{~K} ; a=$ $10.525(5), b=9.169(5), c=6.598(3) \AA, \alpha=106.71(5), \beta=103.50(5)$, $\gamma=97.435(5)^{\circ}, Z=2 ; \lambda=0.71069 \AA ; \mu\left(\mathrm{Mo}-K_{\alpha}\right)=120.0 \mathrm{~cm}^{-1} \cdot \omega-2 \theta$ scan; $6 \leqslant 2 \theta \leqslant 60^{\circ} ; 2650$ reflections, $R=0.149$. Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crstallographic Data Centre. See Notice to Authors, Issue No. 1 .

